
zo = h
(i

(w

.

EM 1110-2-1612
30 Apr 99

8-1

Chapter 8
Bearing Capacity of Floating Ice

8-1.  Introduction

When a river, lake, or sea is subjected to air temperatures below the freezing point for an extended period
of time, an ice cover forms, whose thickness depends on the intensity of this freezing temperature, its
duration, and other factors.  This subject is discussed in detail in Chapter 2 of this manual.  The thickness
of this ice cover may be measured mechanically by a crew that operates on the ice cover.  It may also be
measured remotely, say from an airplane or balloon, by means of electromagnetic waves.  This chapter
discusses the bearing capacity of floating ice and the methods of predicting it.

8-2.  Bearing Capacity of Ice Blocks

First, consider an ice block of uniform thickness floating in water (Figure 8-1).  Because the specific weight
of ice is less than that of water, the ice block floats. It may also carry an additional load P.

a. To determine the bearing capacity of this floating block, subjected centrally to a static load P,
consider its vertical equilibrium before it is totally submerged, as shown in Figure 8-1.  The equilibrium
equation, for z # h, is 

P + Ah (  = Az ( (8-1)i w

where

      P = vertical resultant of the load

      A = horizontal area of the ice block

    (  = specific weight of waterw

     (  = specific weight of ice.i

The other symbols are defined in Figure 8-1.  Bearing capacity is reached when z approaches h.
Substituting the limiting case h = z into Equation 8-1 yields

P  = Ah ((  – ( ). (8-2)max w i

This is the largest load the ice block can carry.  For larger loads P, the block will sink.  It may be of
interest to note that without the load P, the submerged depth of the block, according to Equation 8-1, is

(8-3)

b. Following are two illustrative examples of Equation 8-2.
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Figure 8-1.   Floating ice block with a centrally placed load P

(1) Determine the bearing capacity of an ice block of thickness h = 3 feet (0.9 meters) and a surface
area A = 100 ft  (9.29 m ) for a centrally placed static load P.  According to Equation 8-2, with (  =2 2 

w

62.4 lb/ft  (1000 kg/m  ) and ( = 57.3 lb/ft  (918 kg/m  ), the largest weight the ice block can carry is 3 3 3 3
i 

P  = 100 × 3 × (62.4 – 57.3) = 1530 lb.max

In SI units

P  = 9.29 × 0.9 × (1000 – 918) = 686 kg.max

(2) For an ice block of constant thickness h = 2 feet (0.6 meters), determine the surface area A needed
to carry a centrally placed load of P = 3000 pounds (1361 kilograms).  From Equation 8-2 it follows that
the required area is

With (  = 62.4 lb/ft  (1000 kg/m  ) and ( = 57.3 lb/ft  (918 kg/m  ), it follows thatw i 
3 3 3 3

 

For example, a square area of 17 × 17.3 (5.2 × 5.3 meters) will achieve this aim.

c. When the resultant of the load is not centrally placed on the ice block, the ice block will tilt.  This
will result in a linearly varying pressure p at the bottom surface of the block.  The bearing capacity for this
case may be determined as done previously, except that now, in addition to vertical equilibrium, the
moment equilibrium has to be considered.  Note that when the eccentricity of the load resultant exceeds a
certain limit, namely when the loading moment is larger than the restoring moment, the ice block will tip
over.  When the load is dynamic the analysis is more involved.  Then, the equations of motion for the ice
block have to be coupled with the dynamic equations for the fluid base.
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8-3.  Bearing Capacity of Ice Covers for Loads of Short Duration

When the dimensions of the ice plate are very large compared to its thickness, the ice cover is relatively
flexible in the vertical direction and a vertical load P will deflect the plate, as shown in Figure 8-2.  Thus,
in addition to the constant pressure p  caused by the uniform weight of the ice cover, there will also occur ao

variable pressure p(x,y) caused by the boat effect of the deflected cover (Ashton 1986).

Figure 8-2.  Deflection of large ice plate from vertical load P

a. As is well known, sufficiently large loads will break through the ice.  For this problem, the bearing
capacity of the ice cover depends on the strength of the cover to resist the vertical deformations.

b. To date there is no generally accepted method for calculating the bearing capacity of flexible ice
covers.  One of the reasons is that ice is a complex material, complicated further by the fact that the bottom
part of a floating cover is near the melting temperature.  Another reason is a lack of researcher interest in
break-through tests on frozen lakes or rivers, especially at low temperatures.  Still another is the general
lack of coordination between the theoretical and empirical testing efforts conducted throughout the world.
In the meantime, there is a need for estimating the bearing capacity of large ice covers subjected to a
variety of loads.  To achieve this, a number of approaches used in various countries are presented and
discussed.

8-4.  Experience Values

Individuals who often use ice covers for transportation develop a knowledge of the bearing capacity of ice
covers of given thickness and quality through experience.  To enable an interested party to make a rough
estimate of the ice thickness needed for safe movement of people and vehicles, Table 8-1 is included. In
determining the effective ice thickness to be used with Table 8-1, any thickness of “snow” ice (i.e., ice that
is white owing to entrained air bubbles) should be set as equivalent to half that thickness of clear “black”
ice.  For example, if the measured thickness of the ice cover is 76.2 centimeters (30 inches), of which 25.4
centimeters (10 inches) is snow ice, the effective ice thickness should be considered as 50.8 + 25.4/2 =
63.5 centimeters (20 + 10/2 = 25 inches).
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Table 8-1
Approximate Ice Load-Carrying Capacity (Note:  Read the text before using table.)

Type of Vehicle Metric tons (tons) Vehicles m (ft)0 to -7 EC (32 to 20 EF) (15EF and Lower)
Total Weight†, Distance Between-9 EC and Lower

Necessary Ice Thickness* at Average Ambient
Temperature for Three Days - cm (inches)

Tracked 6.6 (6) 25.4 (10) 22.9 (9) 15.2 (50)

11.0 (10) 30.5 (12) 27.9 (11) 19.8 (65)

17.6 (16) 40.6 (16) 35.6 (14) 24.4 (80)

22.0 (20) 45.7 (18) 40.6 (16) 24.4 (80)

27.6 (25) 50.8 (20) 45.7 (18) 30.5 (100)

33.1 (30) 55.9 (22) 48.3 (19) 35.1 (115)

44.1 (40) 63.5 (25) 55.9 (22) 39.6 (130)

55.1 (50) 68.6 (27) 63.5 (25) 39.6 (130)

66.1 (60) 76.2 (30) 71.1 (28) 45.7 (150)

Wheeled 2.2 (2) 17.8 (7) 17.8 (7) 15.2 (50)

4.4 (4) 22.9 (9) 20.3 (8) 15.2 (50)

6.6 (6) 30.5 (12) 27.9 (11) 19.8 (65)

8.8 (8) 33.0 (13) 30.5 (12) 32.0 (105)

11.0 (10) 38.1 (15) 35.6 (14) 35.1 (115)

*  Freshwater ice.
†  When the temperature has been 0 °C (32 °F) or higher for a few days, the ice is probably unsafe for any load.

8-5.  Empirical Methods

An often used formula for single vehicles is

P = Ah (8-4)2

where P is the allowable load, h is the effective ice cover thickness, and A is a coefficient that depends on
the quality of the ice, the ice temperature, the geometry of the load, the kind of units used, and the factor of
safety.  To ensure safe movement of single vehicles crossing lake or river ice at temperatures below 0EC
(32EF), the straightforward and practical formulas P = h /16 or  have been used for decades.2

These formulas are for English units in which P is in tons and h is in inches.  Although not strictly
equivalent, similar practical formulas for SI units are P = h /100 or , where P is in metric tons2

(1000 kg) and h is in centimeters, and P = h  or , where P is in meganewtons and h is in meters.2

These formulas are all for black ice below 0EC (32EF), and appropriate adjustments to thicknesses to
account for snow ice should be computed as in paragraph 8-4.  The following are illustrative examples of
Equation 8-4.

a. Determine the allowable load of an ice cover with the smallest ice thickness h = 25.4 centimeters
(10 inches).



P =
h 2

16
=

10×10
16

= 6.25 tons .

P =
h 2

100
=

25.4 × 25.4
100

= 6.45 × 103 kilograms (6.45 metric tons) .

h = 4 P = 4 0.1 = 1.26 inches

h = 10 P = 10 0.0907 = 3.0 centimeters.

Pcr = 1
3(1 % <)C(")

Ff h 2
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In metric units, this is

b. Determine the smallest ice thickness needed to safely carry one person of weight P = 200 lb =
0.1 ton (90.7 kilograms = 0.0907 metric ton).

Expressed in metric units, the required thickness is

8-6.  Method Based on the Theory of Elastic Plates

An analytical method for determining the bearing capacity of an ice cover for loads of short duration is
based on the elastic bending theory of thin plates in conjunction with a crack criterion.  The method
consists of the following three steps

C Determination of the maximum stress F  in the floating plate attributable to a given load.max

• Determination of the load P  at which the first crack occurs, utilizing the crack criterion F  # F ,cr max f

where F  is the failure stress.f

• Correlation of P  with the breakthrough load P .  This step is needed because, according to fieldcr f

tests for various plate and load geometries, the occurrence of the first crack does not cause
breakthrough.

The failure stress F  is usually obtained by loading a floating ice beam, cut out from the ice cover underf

consideration as shown in Figure 8-3, to failure and then by computing the largest bending stress at which
it failed.

a. With the equation DL w + (w = q for the response of a homogeneous ice cover, in which w is its4

deflection, subjected to a uniform load q over a circular area, as shown in Figure 8-4, in conjunction with
the crack criterion F  < F ,max f

(8-5)
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Figure 8-3.   Stress test of floating ice beam 

Figure 8-4.   Homogeneous ice cover subjected to a uniform load over a circular area

where

       h = ice cover thickness

v = Poisson’s ratio of the ice cover

a = radius of the loaded area subjected to the uniform load

q = P/(Ba )2

" = a/(D/()1/4



Pcr =
1

3(1 % 0.34)0.38
Ff h 2 = 0.65 Ff h 2 .
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( = specific weight of the liquid base

      D = Eh /[12(1 – v )]3 2

E = Young’s modulus of the ice cover

     L  = biharmonic operator, e.g. (M /Mx + 2M /Mx My  + M /My ) in Cartesian coordinates4 4 4 4 2 2 4 4

C(") = given in Figure 8-5.

Figure 8-5.   C("") for Equation 8-5 

b. To demonstrate the use of Equation 8-5, consider an ice cover with h = 30.5 centimeters
(12 inches), E =  3.45 GPa (500,000 lbf/in. ), v = 0.34, for a circular load distribution with radius a =2

102 centimeters (40 inches).  According to Figure 8-6, the resulting (D/()  = 554 centimeters (218 inches)1/4

and hence " = 40/218 (or 102/554) = 0.18.  According to Figure 8-5, the corresponding C(") = 0.38.  Thus
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Figure 8-6.   Graph required to solve Equation 8-5 

8-7.  Bearing Capacity of Ice Covers for Loads of Long Duration

For loads that do not cause an instantaneous breakthrough, the ice cover deforms at first elastically, and
then with time it continues to deform by creep, especially in the vicinity of the load.  Depending upon the
load intensity and geometry, as well as upon the ice cover properties, the resulting time displacement graph
may be of the type shown in Figure 8-7.  In the case of the upper curve (I), although the ice cover was able
to carry the load immediately after the load was placed on it, there exists a “time to failure” t  at which thef

load breaks through the cover.  Attempts to analyze problems of this type have not been conclusive to date.
In the absence of a reliable method for predicting the bearing capacity of ice plates subjected to loads of
long duration (storage of equipment, parking of vehicles, and airplanes), Figure 8-8 is presented for
estimates.  Note the drop of the breakthrough load with time.  Thus, a stored item that is safe when placed
on the ice cover may break through after a certain time period t .f
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Figure 8-7.   Time-displacement graph of ice deformity 

Figure 8-8.   Bearing capacity reduction for loads of long duration
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8-8.  Other Considerations

Practically, there are a few things one should be aware of when operating on the ice.  Cracks are almost
always present because of thermal expansion.  Most of these are called “dry cracks” because they do not go
to the bottom of the ice sheet (note the concept that all thermal expansion is in the upper portion of the
sheet because the bottom is always at 0EC [32EF]).  These dry cracks do not have an appreciable effect on
bearing capacity.  However, wet cracks that do penetrate the entire sheet should be approached at 50 per-
cent acceptable load and one should try to cross them at an angle near 90 degrees.

a.  When parked, i.e., the long-term load situation, one should look for any signs of water coming up
through the ice and beginning to flood the area. If this occurs, MOVE, because breakthrough is almost
inevitable; this water is an additional load.

b. Throughout the preceding paragraphs, we have stressed the importance of temperature and inferred
daily average air temperatures.  This was done because this is the information available, but it is the ice
temperature that is important.  So, remember that snow cover, as an insulation, slows ice temperature
change.  Also, experience has shown that an added safety factor is necessary when there has been a recent
big drop in air temperature.  Apparently, this causes a thermal shock leading to additional cracking.  Many
accidents to experienced operators have occurred after a rapid drop in air temperature.

8-9.  References

a. Required publications.
None.

b. Related publications.

Ashton 1986
Ashton, G.D., ed.  1986.  River and Lake Ice Engineering, Water Resources Publications, Littleton,
Colorado.


